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Abstract: Chondrocyte viability is a crucial factor in evaluating cartilage health. Most
cell viability assays rely on dyes and are not applicable for in vivo or longitudinal studies.
We previously demonstrated that two-photon excited autofluorescence and second harmonic
generation microscopy provided high-resolution images of cells and collagen structure; those
images allowed us to distinguish live from dead chondrocytes by visual assessment or by the
normalized autofluorescence ratio. However, both methods require human involvement and have
low throughputs. Methods for automated cell-based image processing can improve throughput.
Conventional image processing algorithms do not perform well on autofluorescence images
acquired by nonlinear microscopes due to low image contrast. In this study, we compared
conventional, machine learning, and deep learning methods in chondrocyte segmentation and
classification. We demonstrated that deep learning significantly improved the outcome of the
chondrocyte segmentation and classification. With appropriate training, the deep learning method
can achieve 90% accuracy in chondrocyte viability measurement. The significance of this work
is that automated imaging analysis is possible and should not become a major hurdle for the use
of nonlinear optical imaging methods in biological or clinical studies.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Chondrocyte viability is a crucial factor in evaluating cartilage health. Prevalent cell viability
assays rely on dyes and are not applicable for in vivo or longitudinal studies [1,2]. Recently,
we demonstrated that two-photon excitation autofluorescence (TPAF) and second harmonic
generation (SHG) microscopy provided high-resolution images that can distinguish live/dead
chondrocytes in the articular cartilage tissue [3]. The majority of TPAF in cells originates
from the reduced form of nicotinamide adenine dinucleotide (NAD) or nicotinamide adenine
dinucleotide phosphate (NADP) and flavin proteins (FPs); collagen fibrils yield both TPAF and
SHG signals in the extracellular (ECM) region. TPAF and SHG are both intrinsic signals from
endogenous molecules that are available in cartilage tissue. As such, our TPAF/SHG chondrocyte
viability assay [3] does not need to introduce any labeling dyes to samples, allowing for the
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assessment of cartilage tissue in a non-contact fashion and possibly in vivo if an appropriate
imaging device is developed. In this nonlabeling assay, the cell status is classified by either
the visual observation of the multichannel, pseudo-color images or the cell-based quantitative
analysis with the normalized autofluorescence ratio [3] upon manual cell segmentation. Both
methods rely on human involvement and their throughputs are low. Methods for automated
cell-based image processing are necessary to improve the throughput of chondrocyte viability
assessment for cartilage studies.

Chondrocyte viability is defined as the percentage of live cells in the total cell population.
Automated viability assessment needs to determine both populations for the calculation. In general,
three major imaging processing tasks, including segmentation, detection and classification, are
involved in the method. Segmentation and detection separate cellular areas from the ECM area
and identify individual cells; classification determines if a cell is alive or not. Segmentation,
detection and classification are common imaging processing tasks in the cell-based image analysis.
Many algorithms have been developed to complete these tasks. Readers can refer to the listed Refs.
[5] for reviews of these algorithms and their uses in cell-based image processing. Recent advances
in deep learning (DL) algorithms have significantly leveraged the competency of automated
cell-based image processing in the microscopy field [6,7]. Both the accuracy of analysis and
the complexity of tasks have significantly increased in comparison with what conventional,
non-deep-learning algorithms can provide. One of the major advantages of deep-learning-based
image processing is that features or patterns used in segmentation and classification are not
pre-defined; instead, a comprehensive training process is required to establish networks to process
images using a large number of images acquired under similar settings. In contrast, conventional
algorithms do not need the training process, but pre-defined features are essential. For example,
in conventional cell segmentation [4] and detection methods [5], the pixel intensity and its
distribution patterns often serve as thresholds or morphological features to identify cellular areas.
In cell classification, quantitative measures must be defined as criteria to determine the category
(e.g., live vs dead, or cancerous vs non-cancerous) of a cell. Although conventional methods are
easier to implement and more efficient in the utility of computing resources, their accuracy is
often low, reflected in the cell-touching problem (being not able to isolate individual cells) in
segmentation and by inaccurate cell counts in classification. Automated chondrocyte viability
assessment is a challenging task; perfect cell segmentation is also difficult with the conventional
algorithms due to the low image contrast of TPAF images and densely packed chondrocytes in
the superficial zone. However, we hypothesize that the deep learning algorithms may provide
higher accuracy than conventional methods in automated chondrocyte viability analysis.

DL algorithms have been successfully demonstrated in fields such as biological and medical
image processing [8,9]. In the cell-based analysis, a few studies used DL in either segmentation
[9] or classification [10]. Yang et al. demonstrated a DL method used for automated chondrocyte
identification on histological slides of articular cartilage [11]. It was demonstrated that U-Net, one
of the DL networks, could achieve superior performance compared to conventional methods in
cell nuclei segmentation [12]. The U-Net network was able to achieve an accuracy score between
0.6 and 0.8 in the general pixel-based classification for cell counting and detection; a prediction
and ground truth intersection overlay also reached around 0.9 in morphometry segmentation [8].
Yu et al. compared another DL network, AlexNet, with conventional machine learning (ML)
methods in the multivariate classification of liver fibrosis stages [13]. It was demonstrated that
DL was significantly better than conventional ML in assessing texture features. To our knowledge,
DL networks have not been demonstrated in the chondrocyte viability assessment, a task that
involves both segmentation and classification.

In this report, we present a deep learning strategy for the chondrocyte viability analysis. The
U-Net model was demonstrated to improve the quality of segmentation. However, due to the
cell touching problem, a perfect segmentation was still hard to achieve, which caused significant
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errors in cell counting and led to inaccuracy in the viability analysis. To solve the problem,
we proposed a dual multivariate classification using CNN to evaluate the live and total cell
populations separately in two independent classifications. This method does not require perfect
detachment of each individual cell. We have demonstrated that the deep learning multivariate cell
classification provides over 90% accuracy in viability analysis, which is significantly better than
other methods such as machine learning and conventional algorithms. Although our methods are
particularly developed for chondrocyte viability assessment, the strategy of deep-learning-based
imaging processing may also be used in many other similar applications.

2. Materials and methods

2.1. Image acquisition

Tibias from male Sprague-Dawley rats (n=15) were acquired according to guidelines of the
Institutional Animal Care and Use Committee. Cartilage samples were prepared and imaged
according to the protocols described previously [3]. The imaging microscope was a commercial
multiphoton optical microscope (FV1200 inverted, Olympus Corporation, Tokyo, Japan) equipped
with a Ti:Sapphire ultrafast laser (MaiTai Deepsee, Newport, CA). Two GaAsP photomultiplier
tubes (PMTs) were used to acquire two imaging channels simultaneously. TPAF images were
taken when the laser was tuned to 740 nm. Simultaneously, autofluorescence of NAD(P)H and
FPs was collected by the violet (420–460 nm) and red (575–630 nm) channels, respectively. The
voltage of both PMTs was set at 650 V while the digital gain and the offset of preamps were set at
1.0 and 0, respectively. A 30× silicone immersion objective lens (UPLSAPO 30x, Olympus) with
1.05 N.A. was used in the imaging experiments. The size of the acquired images was 1024×1024
pixels, corresponding to a field of view of 423 µm × 423 µm. The pixel dwell time was set at 2
µs with the Kalman filter online integration of 2. Three-dimensional images were acquired in
the z-stack mode with 50 slices/stack and 1 µm/step; the thickness of the stack covered roughly
the entire superficial layer of the cartilage tissue. SHG images were taken right after the TPAF
imaging with the laser tuned to 860 nm. The violet channel was used to collect the SHG signal at
430 nm. The TPAF and SHG stacks were merged to form a three-channel stack for each sample
region.

2.2. Ground truth definition for segmentation and classification

For the visual assessment of cell viability, using ImageJ (Fiji) [14], a single RGB-color image was
formed by merging three channels of an acquired image with red assigned to the red fluorescence
channel (FPs), green to the violet fluorescence channel (NAD(P)H) and blue to the SHG channel.
Figure 1 shows a typical acquisition of TPAF and SHG channels and the corresponding RGB
color image. The viability of each cell in an image was assessed visually by evaluating the
brightness and color appearance. Bright and green cells were live while dim and red cells were
dead. The ground truth for cell segmentation was obtained by manually tracing the edge of each
lacune in the SHG images using ImageJ (Fiji) on a graphic drawing tablet (Wacom Intuos Pro).
An image with viable labels were first segmented by using different automated segmentation
methods and then divided into classes by visual judgment. For each image, classification results
were stored in a database used to determine the ground truth for viability. We measured 15
tissues in articular cartilage. The training/testing sets came from the same tissue, and the viability
validation set for reported results herein came from different tissues.

2.3. Detection and segmentation of chondrocytes

Generally, TPAF channels show less contrast than the SHG channel. Consequently, SHG images
are used for detection and segmentation of the chondrocyte region. In cartilage, chondrocytes are
surrounded by a thin layer of the pericellular matrix (PCM), which separates cells from ECM.
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Fig. 1. Typical images acquired from cartilage tissue by a nonlinear microscope: (A) SHG;
(B) Violet fluorescence; (C) Red fluorescence; and (D) Merged RGB (Red: red fluorescence;
Green: violet fluorescence; Blue: SHG) image used for chondrocyte viability assessment.
Green arrows point to live cells and red point to dead cells. Scale bar: 50 µm.

Fibrillar collagens (mainly type II) are located only in the ECM area and are the primary source of
SHG signals in cartilage. Chondrocytes and the surrounding PCM appear as dark holes (lacunae)
in the SHG channel. This typical appearance of chondrocytes suggests that SHG images can be
used to segment the lacuna area to form binary masks that can extract cellular areas in TPAF
channels for classification. To generate those masks, SHG images were converted to inverted
grayscale, and the lacuna areas were then segmented using different algorithms. Outcomes
of the segmentation were binary masks to extract cellular areas in TPAF images. Figure 2(A)
summarizes the workflow briefly.

Fig. 2. Chondrocyte viability assessment workflow. (A) Cell segmentation, detection, and
classification. (B) Cell multivariate classification with five outcome categories (0, 1, 2, 3,
and 4) according to the number of total cells or number of live cells contained in a segmented
cellular area. *: no image was found in our current dataset.

Cell segmentation is a common image processing task in fluorescence microscopy, and
many segmentation methods, such as thresholding, morphology and watershed [15], have
been developed. DL-based approaches have recently demonstrated a better performance than
conventional methods [16]. The ability to learn image features that are suited to a given task
makes these approaches particularly efficient. To identify the best approach for chondrocyte
segmentation, we compared two conventional methods, adaptive thresholding/blob detection
(ATB) [17] and watershed segmentation (WS), to the DL method U-Net (UN) [8] and a hybrid
algorithm that applies the watershed method to the U-Net results (UW) [18]. ATB and WS were
implemented using an Open Source Computer Vision Library (OpenCV 4.2.0). The U-Net model
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(See Supplementary) was implemented with Keras 2.1.6 library and Tensorflow 1.4.0. UN was
trained by using over 4000 inverted SHG images (256×256 pixels) with manually annotated
cellular areas. The training procedure took about 20 minutes on a customized computer equipped
with a single graphics card (EVGA GeForce GTX 1080Ti FTW3) and an Intel i9-7920x CPU.
Code 1 written in Python is hosted at GitHub [19].

2.4. Dual multivariate classification for the chondrocyte viability assessment

The cellular areas obtained from SHG images are used in the RGB images to evaluate the live
and dead cells. The chondrocyte viability is defined as the percentage of live cells over the
total number of cells. With a perfect cell segmentation, viability is easy to compute after cell
classification, for which only two categories, live and dead, are needed. Unfortunately, segmented
cellular areas often contain more than one cell, which creates a significant error in the viability
computation. To address this problem caused by inaccurate cell segmentation, we propose a
dual-multivariate-classification strategy. Two independent classifications are performed, and
each classification uses five categories instead of two (live and dead). In one classification, five
categories are defined by the total number of cells (0, 1, 2, 3, and 4) contained in each segmented
cellular area. In the other classification, five other categories are defined by the number of
live cells (0, 1, 2, 3, and 4) contained in each segmented cellular area. Five categories are
used because the probability of more than 4 chondrocytes being found in a single segmented
cellular area is extremely low (none has been found so far). If over 4 cells were found, the
program would count 4 cells. Once the number of live and total cells are determined by the
classification processes, the chondrocyte viability of an image can be determined by using Eq. (1).
Figure 2 represents the workflow of the proposed automated chondrocyte assessment, including
the segmentation procedure and the dual-classification method with two sets of cell categories.

Viability =

N∑︁
i=1

N(i)
Live

N∑︁
i=1

N(i)Total

(1)

where i is the index of segmented cellular areas included in a viability analysis, with a maximum
of N; NLive and NTotal are the number of live cells and the total number of cells, respectively, in
the ith cellular area.

Cell classification was performed with the k-nearest neighbors (KNN) algorithm [20], a support
vector machine (SVM) [21] model, and a convolutional neural network (CNN) [22]. KNN and
SVM are conventional machine learning methods that use histogram orientation gradient (HOG)
[23], morphology detected circles, pseudo color histogram [24] and spatially binned features
as input image features for classification. They were implemented with the standard machine
learning library SKlearn 0.21 [25]. The CNN architecture used for cell classification was an
AlexNet containing 3 convolutional layers and 2 fully connected layers as shown in Fig. S2(B).
The AlexNet was implemented with the Keras 2.1.6 library and Tensorflow 1.4.0. As shown in
Fig. 2(B), 15 categories were defined for cell classification if combination of live and total cell
number are considered. A single AlexNet with 15-catergory classification should work. However,
we trained two independent AlexNet networks, each of which performed a classification with five
categories (0, 1, 2, 3 and 4), one for the live cell numbers, and the other for the total cell number
on input images. The two AlexNet networks were trained and validated separately without any
dependency to each other. This dual 5-category classification strategy reduced the training time
and improved the accuracy of classification. 6000 images were included in the training/testing
data set. The training procedure took about 30 minutes on a customized computer equipped with
a single graphic card (EVGA GeForce GTX 1080Ti FTW3) and an Intel i9-7920x CPU. Code 1
is written in Python and is currently hosted at GitHub. [19].

https://github.com/chenxun511happy/Cartilage-Net
https://github.com/chenxun511happy/Cartilage-Net
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2.5. Evaluation measures

F1 score was used to evaluate the performance of chondrocyte segmentation/detection:

F1 = 2
precision ∗ recall
precision + recall

, (2)

where
precision =

True positive
True positive + False positive

, (3)

recall =
True positive

True positive + False negative
. (4)

In the above equations, true positives correspond to correct cellular area segmentation/detection
compared with the ground truth of visual judgment. False positives correspond to false
cellular area segmentation/detection. False negatives correspond to false non-cellular area
segmentation/detection. Outcomes of cell classifications were evaluated with respect to sensitivity
and specificity as follows:

Sensitivity =
True positive

True positive + False negative
, (5)

Specificity =
True negative

True negative + False positive
, (6)

where true positive corresponds to the number of correct live cells compared with the ground
truth according to the visual judgment, true negative corresponds to the number of correct dead
cells, and false positive correspond to the number of false live cells.

The multivariate classification for live/total chondrocyte numbers was evaluated with a multi-
class receiver operating characteristic (ROC) analysis [26] according to the method described in
this website [27]. By using trained AlexNet, probabilities of cell number categories (0, 1, 2, 3,
and 4) were predicted. A ROC curve was generated by continuously varying the threshold of the
probability for each category based on the ground truth. The area under the ROC curve (AUC)
ranging from 0 to 1 evaluates the ability of a model to accurately distinguish different categories.

After the total number of cells and the number of live cells were defined, a viability ratio
ranging from 0 to 1 was calculated for each TPAF/SHG image. The mean squared error (MSE)
was used to evaluate the overall outcome of the viability assessment and is defined by:

MSE =
1
n

∑︂n

i=1

√︂
(RG − RP)

2, (7)

where RG is the ground truth as manually defined, and RP is the model prediction for the n cell
clusters. The root squared error (RSE) for each TPAF/SHG image for the evaluation in Fig. 6
was computed as follows:

RSEi =

√︂
(RGi − RPi)

2, (8)

where RGi and RPi are the ground truth and predicted viability ratios for the ith image, respectively.
Descriptive statistics were reported as mean standard deviation. Statistically significant differences
were reported when p<0.05. Statistical analysis was performed using GraphPad (GraphPad
Software, Inc).
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3. Results

3.1. Segmentation of cellular areas on SHG images

The first step for automatically assessing chondrocyte viability is to segment individual cells.
As described in Methods, SHG images provide higher contrast than autofluorescence channels
and are, therefore, better suited to identify cellular areas (lacunae). In this study, we compare
the performance of four algorithms that are commonly used for cell segmentation. The first two
algorithms are conventional methods, adaptive thresholding with blob detection (ATB) [17] and
watershed segmentation (WS). The third approach is the convolutional neural network U-Net
(UN) [8], the most popular deep learning method in biomedical imaging. The last method is a
U-Net combined with watershed (UW) [18]. Figure 3(A) shows 3 examples of inverted SHG
images and their segmentation results using the different methods. A sum of 30 images of the
size of 256× 256 pixels, selected from 30 different image stacks, are used for evaluation. The F1
scores are shown in Fig. 3(B). UW obtains the best score (0.92± 0.02), while UN, WS and ATB
methods obtain F1 scores equal to 0.78± 0.03, 0.77± 0.04 and 0.52± 0.03, respectively. These
results demonstrate that UW significantly improves cell segmentation in comparison to the three
other approaches.

Fig. 3. (A) Three typical inverted SHG images and their segmentation results using
four different algorithms. ATB: adaptive thresholding with blob detection; WS: watershed
segmentation; UN: U-Net segmentation; and UW: U-Net segmentation followed by watershed
segmentation (B) Comparison of the performance using F1 scores (*: p-value<0.05; **:
p-value<0.01).

While UW obtains high accuracy segmentations of chondrocytes, the algorithm cannot
completely separate each individual cell as is reflected in its F1 score (0.92± 0.02). For instance,
areas #9, #14 and #15, evaluated with UW in Fig. 4, contain 2 cells each. Even though more
cells are identified with UW than with the other methods, this failure to accurately identify
each individual cell can potentially significantly alter the performance of chondrocyte viability
assessment. Instead of trying to improve cell segmentation, we propose to use a multivariate
classification strategy to estimate the correct number of cells from the segmented cellular areas.

3.2. Dual multivariant classifications of chondrocytes using conventional machine
learning and deep learning methods

To correct for segmentation errors where cells are not separated accurately, we propose a dual
multivariant classification strategy. We utilized the K-Nearest Neighbor method (KNN) [20], a
Support Vector Machine (SVM) model [21] and a Convolutional Neural Network (CNN) [22] for
the estimation of the total number of cells and the estimation of total live cells on a set of images
(n=100) used for the segmentation evaluation. For each image, the 3 classification algorithms
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Fig. 4. Segmented chondrocytes from an SHG image using ATB, WS, UN, and UW. The
number of chondrocytes as manually defined is 20. ATB, WS, UN and UW identified 7, 11,
13, and 16 chondrocytes, respectively.

were applied to the 4 segmentation results obtained with the 4 different segmentation algorithms,
resulting in 12 classification outcomes. Multivariate ROC analysis [26] was performed for
each classification. Figure 5 shows the ROC curves when plotting the true positive rate (TPR,
i.e., Sensitivity) against the false positive rate (FPR, i.e., 1-Specificity) at various threshold
settings. The best sensitivity, specificity, and area under the ROC curve (AUC) of multivariable
classifications were calculated and are summarized in Table 1. Note that Table 1 lists only the
best sensitivity, specificity, and AUC values among the four results yielded from 4 segmentation
algorithms. Again, deep learning outperforms other conventional machine learning algorithms in
both the live cell and total cell classification. The AUCs (1.0 is the best) of both classifications
are over 0.9. These results demonstrate that the proposed deep learning classification method
provided a promising strategy to overcome the problem caused by imperfect segmentation.

Table 1. The sensitivity, specificity, and AUC of live/total multivariate
classifications.

Classification Methods Sensitivity Specificity AUC

Live cells
KNN 0.63± 0.04 0.91± 0.01 0.77± 0.03

SVM 0.65± 0.04 0.90± 0.02 0.76± 0.04

CNN 0.90± 0.03 0.93± 0.01 0.92± 0.02

Total cells
KNN 0.60± 0.05 0.91± 0.01 0.75± 0.03

SVM 0.62± 0.03 0.92± 0.02 0.75± 0.02

CNN 0.91± 0.04 0.92± 0.02 0.94± 0.01
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Fig. 5. The ROC curves of chondrocyte live/total cell number classification using CNN,
KNN and SVM from four segmentation methods (UN, UW, WS and ATB). Sensitivity and
specificity of multivariate classifications of live/total cell numbers. (A) Live cell number
classification. (B) Total cell number classification.

Fig. 6. Root squared errors of viability analysis using Deep/machine learning cell number
ratio-based methods, combining chondrocyte detection methods ATB, WS, UN, and UW,
and classification methods CNN, KNN and SVM. Statistically significant differences were
reported at p<0.05. (ns: no significant difference; *:p-value<0.05; **: p-value<0.01)
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3.3. Comparing the accuracy of viability ratios determined by different segmentation-
classification methods

Fig. 7. Results of viability analysis of experimental images (1024×1024 pixels). (A)
UN-CNN (B) UW-CNN (C) WS-CNN. Red circles: dead cells; green circles: live cells;
yellow circles: both live and dead cells; magenta circles: non-cellular structures. Scale bar:
50 µm.

When the total number of cells and number of live cells were defined, the chondrocyte
viability ratio was computed as described in Eq. (1). Then, the mean squared errors between
the ground truth and model predictions were calculated using Eq. (7). To evaluate the overall
performance of various algorithms in the viability analysis, we included 30 raw RGB images
(1024×1024 pixels) acquired from TPAF/SHG label-free imaging experiments in the testing
set. In this analysis, the raw images were sectioned into 16 sub-images (256×256 pixels)
for segmentation and classification. The outcome was computed over the recombination of
the results from all 16 sub-images for each raw image. The results are shown in Fig. 6 and
Table 2. The mean square error obtained with deep learning-based classification was as low as
0.0622 using WS-CNN, 0.0677 using UN-CNN, and 0.0764 using UW-CNN. The CNN-based

Table 2. RSEs of the measured viability using different segmentation/classification methods.

Methods Mean Std Dev

UW-CNN 0.076 0.090

UW-SVM 0.104 0.129

UW-KNN 0.151 0.127

UN-CNN 0.067 0.071

UN-SVM 0.096 0.111

UN-KNN 0.152 0.131

WS-CNN 0.062 0.060

WS-SVM 0.111 0.119

WS-KNN 0.129 0.115
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classification demonstrated the best accuracy for viability analysis, regardless of the segmentation
algorithms. Additionally, deep learning CNN classifier-based viability analysis was better than
those feature-based machine learning classifiers such as SVM and KNN. Figure 7 shows typical
image outputs of the segmentation and classification processes using UN-CNN, UW-CNN and
WS-CNN. In the output images, segmented chondrocyte areas were circled with different colors:
red for dead cells, green for live cells, yellow for cell clusters, and magenta for no-cell areas.

4. Discussion

Inspired by the deep watershed transform [18], in this report, we performed a second segmentation
with the watershed method on the output of the deep learning segmentation. The watershed
targeted the margin features and significantly improved the touching problem. The F1 score
reached over 0.9 on the chondrocyte segmentation in articular cartilage. This strategy may be
quite useful in other biological and clinical image processing methods when higher accuracy is
sought in segmentation. For example, this strategy can improve the segmentation when cells are
densely packed in cell culture.

In our cell viability analysis, TPAF/SHG images are first converted to RGB color images.
The visual assessment of these images provides a reliable way to separate dead/live populations.
However, conventional machine learning methods such as SVM and KNN did not perform well
in the cell classification, partly because these methods used pre-defined features that might not
completely cover the features that the human brain uses to process the images. Deep learning
networks may establish much more complicated models through the training process although
the exact model is inscrutable. In our study, we demonstrated that CNN outperformed SVM
and KNN methods in our tasks. In our classification, we used two 5-category multivariate
classifications, one for live cell (n=0-4) and the other for total cell (n=0-4) counts. As shown in
Fig. 2(B), it is possible to perform one 15-category classification; however, too many categories
in classification reduces the accuracy and increases the training time significantly. We found that
the two 5-category classifications were more efficient than the single 15-category classification.
This suggests, as shown in the results, that the dual classifications are the choice to improve the
accuracy of the viability analysis while maintaining a low computing cost.

In deep learning neural networks, we used U-Net and CNN (AlexNet) neural networks, but
there were other similar networks, such as R-CNN [28], Inception [29], ResNet [30], etc., which
use many more layers for image segmentation/detection and classification. Deeper networks may
increase the performance and quantitative accuracy but with increased computing costs and high
reliance on the computing capability of processors (CPUs, single GPU, or multiple GPUs). For
instance, on the same classification training dataset, batch size, and epoch length, the training
time of ResNet with hundreds of neural layers was 2-3 times longer than AlexNet [31]. In this
paper, the training time of developed models (U-Net and AlexNet architectures) cost only less
than half an hour for thousands of images. Nevertheless, in future work, deeper networks will be
explored with a balance of the depth and the computing cost to improve the accuracy futher.

Additionally, nonlinear optical microscopy (NLOM) imaged cell function and morphology and
indicated the health status of cartilage through 3D z-stack TPAF/SHG images. However, we built
deep learning models in which 2D TPAF/SHG images and detection/classification annotations
were used as training inputs. Lack of the correlation between slices may induce low sensitivity
and specificity because parts of cellular volume miss morphological and functional features
associated with the whole volume. Moreover, it has been demonstrated that 3D deep learning
models may increase performance and accuracy by providing more z-stack information. For
instance, Ronneberger et al. demonstrated the performance of confocal kidney segmentation of the
3D architecture outperforms equivalent 2D implementation [32]. Meanwhile, in the classification
of stack images, 3D models such as multi-view CNN and volumetric CNN were developed. For
instance, Guibas et al. demonstrated that volumetric CNN is significantly worse than multi-view
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CNN [33] even though their inputs have similar amounts of information. Based on this problem,
the group proposed two new architectures of volumetric CNNs, which outperform state-of-the-art
volumetric CNNs, achieving comparable performance to multi-view CNNs at the same resolution.
It was demonstrated in the classification of phase-contrast image sequences of stem cells that
volumetric CNN can outperform the 2D CNN features and the popular hand-crafted features for
visual representation [34]. But, in PET images of human brains, the classification of Alzheimer’s
disease by using 3D-CNN and 2D-CNN is not significantly different [35]. Thus, the classification
performance of 3D-CNN and 2D-CNN is highly dependent on the types of neural networks and
image features. In the future, we will compare the performance of 2D and 3D neural networks
with respect to the chondrocyte viability assessment.

5. Conclusion

In this paper, the developed multivariate deep learning algorithm showed the capability of
analyzing cell viability from nonlabelled cellular images acquired from a nonlinear optical
microscope. A new strategy counted all touching cells with high accuracy by taking advantage
of complicated multivariate classification. Chondrocytes were detected and classified with 90%
accuracy using deep learning methods. The segmentation and classification strategy described in
this report provided a high accuracy, automated method for the chondrocyte viability analysis.
We anticipate that this automated imaging processing method will have an impact on in vivo or
ex vivo studies of cartilage degeneration. Additionally, the strategy presented here may provide a
concept to overcome the cell touching patterns for cell counting in similar situations.
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